您还没有绑定微信,更多功能请点击绑定

请教氰化处理相关知识(20金币)

那位大虾能告诉我一些有关氰化处理的相关知识吗?
对“好”的回答一定要点个"赞",回答者需要你的鼓励!
已邀请:

island_1 (威望:0) - 菜鸟

赞同来自:

11 处理含氰废水的其它方法

除了氯氧化法、二氧化硫-空气氧化法、过氧化氢氧化法、酸化回收法、萃取法已独立或几种方法联合使用于黄金氰化厂外,生物化学法、离子交换法、吸附法、自然净化法在国内外也有工业应用,由于报道较少,工业实践时间短,资料数据有限,本章仅对这些方法的原理、特点、处理效果进行简要介绍。

11.1 生物化学法

11.1.1生物法原理

生物法处理含氰废水分两个阶段,第一阶段是革兰氏杆菌以氰化物、硫氰化物中的碳、氮为食物源,将氰化物和硫氰化物分解成碳酸盐和氨:

微生物

Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3

对金属氰络物的分解顺序是Zn、Ni、Cu、Fe对硫氰化物的分解与此类似,而且迅速,最佳pH值6.7~7.2。

细菌

SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3

第二阶段为硝化阶段,利用嗜氧自养细菌把NH3分解:

细菌

NH3+1.5O2→NO2-+2H++H2O

细菌

NO2-+0.5O2→NO3-

氰化物和硫氰化物经过以上两个阶段,分解成无毒物以达到废水处理目的。

生物化学法根据使用的设备和工艺不可又分为活性污泥法、生物过滤法、生物接触法和生物流化床法等等,国内外利用生物化学法处理焦化、化肥厂含氰废水的报导较多。

据报道,从1984年开始,美国霍姆斯特克(Homestake)金矿用生物法处理氰化厂废水,英国将一种菌种固化后用于处理2500ppm的废水,出水CN-可降低到1ppm,是今后发展的方向。

微生物法进入工业化阶段并非易事,自然界的菌种远不能适应每升数毫克浓度的氰化物废水,因此必须对菌种进行驯化,使其逐步适应,生物化学法工艺较长,包括菌种的培养,加入营养物等,其处理时间相对较长,操作条件严格。如温度、废水组成等必须严格控制在一定范围内,否则,微生物的代谢作用就会受到抑制甚至死亡。设备复杂、投资很大,因此在黄金氰化厂它的应用受到了限制。但生物化学法能分解硫氰化物,使重金属形成污泥从废水中去除,出水水质很好,故对于排水水质要求很高、地处温带的氰化厂,使用生物法比较合适。

11.1.2 生物法的应用情况

国外某金矿采用生物化学法处理氰化厂含氰废水。首先,含氰废水通过其它废水稀释,氰化物含量降低到生化法要求的浓度(CN-<10.0mg/L)、温度(10℃~18℃,必要时设空调),pH值(7~8.5)然后加入营养基(磷酸盐和碳酸钠),废水的处理分两段进行,两段均采用Φ3.6×6m的生物转盘,30%浸入废水中以使细菌与废水和空气接触,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸盐和氨,同时重金属被细菌吸附而从废水中除去,第二段包括氨的细菌硝化作用,首先转化为亚硝酸盐,然后被转化为硝酸盐,第一段采用事先经过驯化的,微生物从工艺水中以两种适应较高的氰化物和硫氰化物的浓度。第二段采用分离出来的普通的亚硝化细菌和硝化细菌,被附着在转盘上的细菌的浮生物膜吸附重金属并随生产膜脱落而被除去,通过加入絮凝剂使液固两相分开,清液达标排放,污泥排放尾矿库。该处理装置处理废水(包括其它废水)800m3/h,每个生物转盘直径3.6m,长6m。由波纹状塑料板组成。该处理厂总投资约1000万美元,其处理指标见表10-1。

表10-1 生物化学法处理含氰废水效果

废水名称 废水各组份含量(mg/L)

总CN- CN- SCN- Cu

处理前 3.67 2.30 61.5 0.56

处理后 0.33 0.05 0.50 0.04

11.1.3 生物化学法的特点

一、优点

生物法处理的废水,水质比较好,CN-、SCN-、CNO-、NH3、重金属包括Fe(CN)64-均有较高的去除率,排水无毒,尤其是能彻底去除SCN-,是二氧化硫-空气法、过氧化氢氧化法、酸化回收法等无法做到的。

二、缺点

1)适应性差,仅能处理极低浓度而且浓度波动小的含氰废水,故氰化厂废水应稀释数百倍才能处理,这就扩大了处理装置的处理规模,大大增加了基建投资。

2)温度范围窄,寒冷地方必须有温室才能使用。

3)只能处理澄清水,不能处理矿浆。

11.2 离子交换法

1950年南非开始研究使用离子交换法处理黄金行业含氰废水。1960年苏联也开始研究,并在杰良诺夫斯克浮选厂处理含氰废水并回收氰化物和金。

1970年工业装置投入运行,取得了较好的效果,1985年加拿大的威蒂克(Witteck)科技开发公司开发了一种处理含氰废水的离子交换法,不久又成立了一个专门推广该技术的公司,叫Cy-tech公司,离子交换法处理进行研究,取得了许多试验数据,并已达到了工业应用的水平。

11.2.1 离子交换法的基本原理

离子交换法就是用离子交换树脂吸附废水中以阴离子形式存在的各种氰化物:

R2SO4+2CN-→2R(CN)2+SO42-

R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-

R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-

2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-

Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附与上述类似,硫氰化物阴离子在树脂上的吸附力比CN-更大,更易被吸附在树脂上。

R2SO4+2SCN-→2RSCN

在强碱性阴离子交换树脂上,黄金氰化厂废水中主要的几种阴离子的吸附能力如下:

Zn(CN)42->Cu(CN)32->SCN->CN->SO42-

树脂饱和时,如果继续处理废水,新进入树脂层的Zn(CN)42-就会将其它离子从树脂上排挤下来,使它们重新进入溶液,但即使继续进行这一过程,树脂上已吸附的各种离子也不会全部被排挤下来,各种离子在树脂上的吸附量根据各种离子在树脂上的吸附能力以及在废水中的浓度不同有一部分配比。对于强碱性树脂来说,这种现象十分明显,具体表现在流出液的组成随处理量的变化特性曲线上。各组分当被吸附力强于它的组分从树脂上排挤下来时,其流出液浓度会出现峰值。

不同的弱碱树脂具有不同的吸附特性。因此,对不同离子的吸附力也有很大差别,研究用离子交换法处理含氰废水的一个重要任务就是去选择甚至专门合成适用于我们要处理的废水特点的树脂,否则树脂处理废水的效果或洗脱问题将难以满足我们的需要。难以工业化应用。

11.2.2 离子交换法存在的问题及解决途径

离子交换法存在的问题主要是树脂的中毒问题,主要是吸附能力强于氰化物离子的硫氰化物、铜氰络合物和铁氰络合物。由于上述物质吸附到树脂上,使树脂的洗脱变得较为复杂甚至非常困难。

一.硫氰化物

对于大部分金氰化厂来说,废水中含有100mg/L以上的SCN-,其中金精矿氰化厂废水SCN-高达800mg/L以上,由于强碱性阴离子交换树脂对SCN-的吸附力较大,而且SCN-的浓度如此之高,使树脂对其它应吸附而从废水中除去的组分的吸附量大为降低,如Zn(CN)42-、Cu(CN)32-,同时,由于SCN-的饱和,会使CN-过早泄漏,导致离子交换树脂的工作饱和容量过低。例如,当废水中SCN-350mg/L时,其工作饱和容量(指流出液中CN-≤0.5mg/L条件)仅20倍树脂体积,而且SCN-难以从树脂上通过简单的方法洗脱下来,这就限制了具有大饱和容量的强碱性阴离子交换树脂的应用,而弱碱性阴离子交换树脂饱和容量最高不过强碱性树脂的一半,从处理洗脱成本考虑,也不易使用,可见较高的SCN-浓度给离子交换树脂带来很大麻烦。如果从树脂上不洗脱SCN-,那么流出液CN-不能达标,即使不考虑CN-的泄漏,树脂对其它离子的工作容量也减少。

二.铜

尽管树脂对Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的浓度往往较高,在强碱树脂上的饱和容量约8~35kg/m3,甚至更高,但用酸洗脱树脂上的氰化物时,铜并不能被洗脱下来,而是在树脂上形成CuCN沉淀,为了洗脱强碱树脂上的铜,必须采用含氨洗脱液洗脱,使铜溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脱下来,这就使工艺复杂化,尤其是洗脱液的再生也不够简便。

三.亚铁氰化物离子

Fe(CN)64-尽管在树脂上吸附量不大,但在用酸洗脱树脂上氰化物和锌时,会生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉淀物,而使树脂呈深绿至棕黑色,影响树脂的再生效果,如果专门洗脱Fe(CN)64-,尽管效果好,可是,洗脱液再生等问题均使工艺变得更长,操作更复杂。

11.2.3 技术现状

根据国产强碱树脂的上述特点,提出二种工艺:一是用强碱性阴离子处理高、中浓度含氰废水,旨在去除废水中的Cu、Zn,废水不达标但由于Cu、Zn的大为减少而有宜于循环使用。二是用强碱性树脂处理不含SCN-或SCN-浓度100mg/L以下的废水,回收氰化物为主,处理后废水达标外排。例如,在金精矿烧渣为原料的氰化厂用离子交换法处理贫液。把离子交换法用于这两方面在技术和经济上估计比用酸化回收法优越。最好的办法是开发易洗脱再生的新型树脂,国外的许多开发新型树脂的报导介绍了吸附废水中Fe(CN)64-、而且较容易被洗脱下来的树脂,近年来,由于越来越重视三废的回收,使人们十分重视使用离子交换法处理废水使其达到排放标准同时使大多数氰化物得以回收并重新使用这类课题。

如果觉得满意,将奖金直接交给“百度”。

3 个回复,游客无法查看回复,更多功能请登录注册

发起人

扫一扫微信订阅<6SQ每周精选>