您还没有绑定微信,更多功能请点击绑定

关于Queuing Analysis的公式

等待时间是服务业流程中计算服务效果的一个重要分析手段,我相信下面修正后的公式增加了到达速度和服务速度的变异系数。然而实际情况是否真的如计算的那么准确,我想肯定是有问题的。不过任何公式都要从实际意义来看,下面的公式至少给出了一种计算等待时间的方法,大多数情形也是可以的。

比如:当你的服务节拍和客户的到达节拍比较一致时,无疑产生的等待时间是巨大的,甚至有时都觉得不可能。

请大家展开自己的看法,不过别让宋祥彦同志看到,不然他再写一本《质疑精益生产》又得吵架了,呵呵!

Queuing theory can be applied by a simple mathematical approximation demonstrated by Kingman which presented that the combinations of following parameters lead to a clear and direct impact on the generation of long queues:
The formula reads:
Time in Queue = { (ca2 + ce2) / 2 } { Util / (1 – Util) } { te }

Utilization(Util)
Utilization = The total amount of demand/total amount of capacity
Generally highly utilization experience longer queues than lightly utilization;

Average Service Times (te)=SAV
As the average service time to a customer expands, the capacity declines and queue time extends;

Variability of Service and Arrivals((ca2 + ce2) / 2 )
Ca is the coefficient of variation of the arrivals = std dev. / average arrival rate
Ce is the coefficient of variation of the service time to each arrival = std dev. / average service time
As variation increases, the mix of variability from both arrivals and service times goes up which tends to produce a longer queue and inconsistent utilization
对“好”的回答一定要点个"赞",回答者需要你的鼓励!
已邀请:

alexyan (威望:0)

赞同来自:


这里面的Util怎么算啊?是一天的demand/capacity还是某一个时间段的. 如果until大于1的话,那等待时间会出现负数?

12 个回复,游客无法查看回复,更多功能请登录注册

发起人

扫一扫微信订阅<6SQ每周精选>