你的浏览器禁用了JavaScript, 请开启后刷新浏览器获得更好的体验!
输入关键字进行搜索
搜索:
没有找到相关结果
sunny_tan (威望:0) (广东 深圳)
赞同来自:
1 个回复,游客无法查看回复,更多功能请登录或注册
1 个回复
sunny_tan (威望:0) (广东 深圳)
赞同来自:
Regression Analysis: 异音 versus 1-4.2, 2-3.0, ...
The regression equation is
异音 = 348 - 2.87 1-4.2 - 2.92 2-3.0 + 6.10 3-2.0 - 85.8 4-2.995 - 4.33 5-18.9
+ 1.3 6-Ra - 0.05 7-Ry - 0.124 轴心刮痕 + 0.534 轴承刮痕
Predictor Coef SE Coef T P
Constant 348.2 253.7 1.37 0.193
1-4.2 -2.872 4.056 -0.71 0.491
2-3.0 -2.922 6.252 -0.47 0.648
3-2.0 6.103 7.352 0.83 0.421
4-2.995 -85.81 70.04 -1.23 0.242
5-18.9 -4.329 4.535 -0.95 0.357
6-Ra 1.34 13.81 0.10 0.924
7-Ry -0.054 1.364 -0.04 0.969
轴心刮痕 -0.1237 0.3278 -0.38 0.712
轴承刮痕 0.5343 0.1864 2.87 0.013
S = 0.366623 R-Sq = 55.3% R-Sq(adj) = 24.4%
Analysis of Variance
Source DF SS MS F P
Regression 9 2.1657 0.2406 1.79 0.165
Residual Error 13 1.7474 0.1344
Total 22 3.9130
Source DF Seq SS
1-4.2 1 0.0816
2-3.0 1 0.2582
3-2.0 1 0.0580
4-2.995 1 0.4005
5-18.9 1 0.1402
6-Ra 1 0.0097
7-Ry 1 0.0284
轴心刮痕 1 0.0845
轴承刮痕 1 1.1046
Unusual Observations
Obs 1-4.2 异音 Fit SE Fit Residual St Resid
18 4.23 1.0000 0.2850 0.2078 0.7150 2.37R
22 4.20 0.0000 0.6379 0.2565 -0.6379 -2.43R
R denotes an observation with a large standardized residual.