您还没有绑定微信,更多功能请点击绑定

Minitab回归分析

帮忙分析一下这个结果,不甚感激!

Regression Analysis: Distance versus Stiffness, Density, ...

The regression equation is
Distance = - 18.6 + 0.229 Stiffness + 0.62 Density - 0.117 F-Max
+ 0.0200 E-Modulus


Predictor Coef SE Coef T P
Constant -18.596 7.092 -2.62 0.011
Stiffness 0.22927 0.04411 5.20 0.000
Density 0.619 8.926 0.07 0.945
F-Max -0.11663 0.02465 -4.73 0.000
E-Modulus 0.019979 0.001503 13.29 0.000


S = 6.04154 R-Sq = 96.7% R-Sq(adj) = 96.4%


Analysis of Variance

Source DF SS MS F P
Regression 4 62192 15548 425.97 0.000
Residual Error 59 2154 37
Total 63 64345


Source DF Seq SS
Stiffness 1 6629
Density 1 47637
F-Max 1 1475
E-Modulus 1 6451


Unusual Observations

Obs Stiffness Distance Fit SE Fit Residual St Resid
1 66.1 84.240 71.350 1.974 12.890 2.26R
2 67.5 86.130 68.238 1.715 17.892 3.09R
3 63.0 83.240 69.838 1.721 13.402 2.31R
4 65.3 84.537 70.213 1.689 14.324 2.47R

R denotes an observation with a large standardized residual.

对“好”的回答一定要点个"赞",回答者需要你的鼓励!
已邀请:

fjkong (威望:0) (江苏 苏州) 石油化工 技术员

赞同来自:

多元线性回归分析中,数据或残差要属于正态分布吗?如何检验?

14 个回复,游客无法查看回复,更多功能请登录注册

发起人

扫一扫微信订阅<6SQ每周精选>