minitab-msa共同探讨
Gage R&R Study - ANOVA Method
Two-Way ANOVA Table With Interaction
Source DF SS MS F P
Part 9 88.3619 9.81799 492.291 0.000
Operator 2 3.1673 1.58363 79.406 0.000
Part * Operator 18 0.3590 0.01994 0.434 0.974
Repeatability 60 2.7589 0.04598
Total 89 94.6471
Two-Way ANOVA Table Without Interaction
Source DF SS MS F P
Part 9 88.3619 9.81799 245.614 0.000
Operator 2 3.1673 1.58363 39.617 0.000
Repeatability 78 3.1179 0.03997
Total 89 94.6471
Gage R&R
%Contribution
Source VarComp (of VarComp)
Total Gage R&R 0.09143 7.76
Repeatability 0.03997 3.39
Reproducibility 0.05146 4.37
Operator 0.05146 4.37
Part-To-Part 1.08645 92.24
Total Variation 1.17788 100.00
Study Var %Study Var %Tolerance
Source StdDev (SD) (6 * SD) (%SV) (SV/Toler)
Total Gage R&R 0.30237 1.81423 27.86 22.68
Repeatability 0.19993 1.19960 18.42 14.99
Reproducibility 0.22684 1.36103 20.90 17.01
Operator 0.22684 1.36103 20.90 17.01
Part-To-Part 1.04233 6.25396 96.04 78.17
Total Variation 1.08530 6.51180 100.00 81.40
Number of Distinct Categories = 4
分析如下:
数据分析:
1、 因是给定公差的MSA,故看%Study Var,因Total Gage R&R =27.86%,可知主要的误差来自零件
根据判定原则:
、Less than 10%  the measurement system is acceptable.
、Between 10% and 30%  the measurement system is acceptable depending on the application, the cost of the measuring device, cost of repair, or other factors.
C、Greater than 30%  the measurement system is unacceptable and should be improved.
可以知道此测量系统需要根据实际情况而判定是否可以接受
2、Number of Distinct Categories = 4
测量系统不能有效的区分零件或过程,根据The Automobile Industry Action Group (AIAG)一般上述数值要大于等于5,这也说明MSA可能有问题,但具体要根据实际情况看此MSA是否接受
图形分析:
1、 看Components of Variation graph,也可以发现主要的误差来自零件间
2、 MEASURMENT By Part graph 看到个零件差异很的大,说明变异主要来自零件间
3、 看R Chart by Operator 测量人A测量结果一致性好,B最差
4、 MEASURMENT By OPERATOR graph 可以看再生性,三人测量差异较小,但C测试数据较低
5、 XBAR图有多点超出控制线,说明主要的误差来自零件间
改进方向:
1、 仪器精度提高
2、 B、C进行再培训
Two-Way ANOVA Table With Interaction
Source DF SS MS F P
Part 9 88.3619 9.81799 492.291 0.000
Operator 2 3.1673 1.58363 79.406 0.000
Part * Operator 18 0.3590 0.01994 0.434 0.974
Repeatability 60 2.7589 0.04598
Total 89 94.6471
Two-Way ANOVA Table Without Interaction
Source DF SS MS F P
Part 9 88.3619 9.81799 245.614 0.000
Operator 2 3.1673 1.58363 39.617 0.000
Repeatability 78 3.1179 0.03997
Total 89 94.6471
Gage R&R
%Contribution
Source VarComp (of VarComp)
Total Gage R&R 0.09143 7.76
Repeatability 0.03997 3.39
Reproducibility 0.05146 4.37
Operator 0.05146 4.37
Part-To-Part 1.08645 92.24
Total Variation 1.17788 100.00
Study Var %Study Var %Tolerance
Source StdDev (SD) (6 * SD) (%SV) (SV/Toler)
Total Gage R&R 0.30237 1.81423 27.86 22.68
Repeatability 0.19993 1.19960 18.42 14.99
Reproducibility 0.22684 1.36103 20.90 17.01
Operator 0.22684 1.36103 20.90 17.01
Part-To-Part 1.04233 6.25396 96.04 78.17
Total Variation 1.08530 6.51180 100.00 81.40
Number of Distinct Categories = 4
分析如下:
数据分析:
1、 因是给定公差的MSA,故看%Study Var,因Total Gage R&R =27.86%,可知主要的误差来自零件
根据判定原则:
、Less than 10%  the measurement system is acceptable.
、Between 10% and 30%  the measurement system is acceptable depending on the application, the cost of the measuring device, cost of repair, or other factors.
C、Greater than 30%  the measurement system is unacceptable and should be improved.
可以知道此测量系统需要根据实际情况而判定是否可以接受
2、Number of Distinct Categories = 4
测量系统不能有效的区分零件或过程,根据The Automobile Industry Action Group (AIAG)一般上述数值要大于等于5,这也说明MSA可能有问题,但具体要根据实际情况看此MSA是否接受
图形分析:
1、 看Components of Variation graph,也可以发现主要的误差来自零件间
2、 MEASURMENT By Part graph 看到个零件差异很的大,说明变异主要来自零件间
3、 看R Chart by Operator 测量人A测量结果一致性好,B最差
4、 MEASURMENT By OPERATOR graph 可以看再生性,三人测量差异较小,但C测试数据较低
5、 XBAR图有多点超出控制线,说明主要的误差来自零件间
改进方向:
1、 仪器精度提高
2、 B、C进行再培训
没有找到相关结果
已邀请:
8 个回复
质量厨师 (威望:57) (上海 上海) 电子制造 Director of Quality, Asia - 变焦主要靠走;对焦主要靠手;背景虚化靠抖!
赞同来自:
至少你的什么测量系统,什么产品的测量?测量的特性是什么呢?说说清楚么大家可能看起来好点吧?