测量不确定度初学者指南测量及测量不确定度
1. 测量
1. 1什么是测量?
测量告知我们关于某物的属性。它可以告诉我们某物体有多重,或者有多热,或者有多
长。测量就赋予这种属性一个数。
测量总是用某种仪器来实现的。尺子、秒表、称重称,以及温度计都是测量仪器。
测量结果通常有两部分组成:一个数和一个测量单位,例如"这有多长?……2米"。
1. 2什么不是测量?
有些过程看起来像是测量,然而并不是。例如,两根绳子做比较,看那一根长些,这实际上就不是测量。计数通常也不认为是测量。检测(test)往往不是测量;检测通常要得出"是或非"的答案,或者"合格或不合格"的结果。(但是,测量可以是检测的局部过程,逐而得出检测结果)。
2. 测量不确定度
2.1 什么是测量不确定度?
测量不确定度是对任何测量的结果存有怀疑。你也许认为制作良好的尺子、钟表和温度计应该是可靠的,并应给出正确答案。但对每一次测量,即使是最仔细的,总是会有怀疑的余量。在日常说话中,这可以表述为"出入",例如一根绳子可能2米长,由1cm的"出入"。
2.2 测量不确定度的表述
由于对任何测量总是存在怀疑的余量,所以我们需要回答"余量有多大?"和"怀疑有多差?"这样,为了给不确定度定量实际上需要有两个数。一个是该余量(或称区间)的宽度;另一个是置信概率,说明我们对"真值"在该余量范围内有多大把握。
例如:
我们可以说某棍子的长度测定为20厘米加或减1厘米,由95%的置信概率。这结果可以写成:
20cm±1cm,置信概率为95%。
这个表述是说我们对棍子长度在19厘米到12厘米时间由95%的把握。还有其他一些表述置信概率的方式,对此将在下文第7节中再说。
2.3误差与不确定度的比较
不要混淆术语"误差"和"不确定度"是很重要的。
误差:是某待测物的测得值与"真值"之间的差。
不确定度:是定量表示对测量结果的怀疑程度。
无论何时我们都可能试图去修正任何已知的误差,例如:通过从校准证书得到的修正值。
但是我们并不知道其值的任何误差都是不确定度的来源。
2.4 为什么测量不确定度是重要的
你也许对测量不确定度有兴趣仅仅是因为你希望要做质量好的测量,并要了解结果。但是,还有其他一些更特殊的理由要考虑测量不确定度。
你也需要做测量作为下列工作的一部分:
●校准--必须在证书上报告测量不确定度。
●检测--需要测量不确定度来确定合格与否。
●允差--在你能确定是否符合允差以前,你需要知道不确定度。 ……或者你可能需要阅读或了解校准证书或者检测或测量的书面技术规范。
3. 关于数字集合的基本统计学
3.1 "测量再而三,只为一剪子"…操作误差
工匠中间有一种说法,"测量再而三,只为一剪子"。这意思是说,在着手工作以前通过两、三次核对测量,你就能减少工作中出错的风险。
事实上,任何测量至少进行三次是明智的做法。若测量只进行一次,就意味着出错可能完完全被忽视了。如果你做两次测量而两者并不一致,你仍然不会知道哪一个是"错"的。但如果你做三次测量,切有两次彼此一致,而且第三个差很多,那么你就能怀疑这第三个测量结果。
所以,仅仅为了防止出大错,或叫操作误差,对任何测量至少进行三次就是明智的。但是测量不确定度实际上并不是操作误差。这是有对重复测量多次的其他重要理由。 3.2基本统计计算
从你的测量重,通过取多次读数并进行某些基本统计计算,你就能增加你所得到的信息量。有两项最主要的统计计算,就是要求的一组数值的平均值或算术平均值,以及它们的标准偏差。
3.3获得最佳估计值--取多次读数的平均值
虽然重复测量给出不同结果,但你也许并没有做错什么。这可能是由于进行的测量有自然变化。(例如:若你在野外测量风速,常常不会有稳定的值。)或者,也可能因为你的测量器具没有工作在完全稳定状态。(例如:卷尺可能因拉紧情况不同而给出不同结果。)
如果在重复读数时读数有变化,那么最好多次读数并取平均值。平均值给你的是"真值"的估计值。平均值和算术平均值通常是在符号上方加一短杠来表示,例如?(#x短杠)就是x的平均值。图以表示一组量值及其平均值图解说明。例1则说明如何计算算术平均值。
图1"圆点图"说明一组实例值并标出了平均值
3.4你应该对多少次读数求平均
一般说来,你用的测量值越多,那么你得到的"真"值的估计值就越好。理想的估计值应当无穷多数值集来求得平均值。但增加读数要做额外的工作,而且会产?quot;缩小回报"的效果。什么是合理的次数呢?10次是普遍选择的,因为这能是计算容易。采取20次只比10次给出稍好的估计值,采用50次只比20次稍好。根据经验通常取4至10次读数就够了。
3.5分散范围…标准偏差
在重复测量给出了不同结果时,我们就要了解这些读数分散范围有多宽。量值的分散范围告诉了我们关于测量不确定度的情况。通过了解这种分散范围有多大,我们就能着手判断这次测量或者组测量的质量如何。
有时候我们知道了最大值和最小值之间的范围就够了。但是对一组少量的值,这就不可能给出关于最大值和最小值之间读数分散性的有用信息。例如,一个很大的分布范围可能会由于单次读数而与其他读数差很多。
对分散范围定量的常见形式是标准偏差。一个数集的标准偏差告诉我们各个读数代表性的与该组读数平均值差多少。
根据"经验",全部读数大概有三分之二会落在平均值的加、减(±)一倍标准偏差范围内。大概有全部读数的95%会落在两倍标准偏差范围内。虽然这种"尺度"决非普遍适用,但应用广泛。对标准偏差的"真"值只能从一组非常大量(无穷多)的读数来求得。从适度个数的量值能够求得的只是标准偏差的估计值。3.6计算估计的标准偏差
----------------------------------------------------------------------
例2表明如何计算标准偏差的估计值
例2计算一组数值的估计的标准偏差
单用笔和纸来算标准偏差是不方便的,但下例可以手算。例如你有一组n次的读数(让我们用于上例同样的10次一组)
先求平均值:
该组读数如前例所泳:16、19、18、16、17、19、20、15、17、13,平均值为17。
下一步求每个读数与平均值之差,即 -1、+2、+1、-1、0、+2、+3、-2、0、-4。
对上面的数求平方值,即 1、2、1、1、0、4、9、4、0、16
再下一步,求和并除以n-1(本例n为10,n-1为9)。即
估计的标准偏差与通过对上面总数取平方跟求得,即s=4.441/2=2.1
(修约到小数点后一位)
4.误差和不确定度来自何处?
许多事物都会暗暗损及测量。测量中的缺陷可能看的见,也可能看不见。由于实际的测量决不会是在完美的条件下进行的,误差和不确定度可能来自下述多方面:
测量仪器(器具)--仪器可能遇到的误差包括:偏移,由于老化、磨损或其他多种漂移而变化,读数不清晰,噪声(对电子仪器),以及其他许多问题。
被测物--被测物可能不稳定。(设想在温暖的房间内试图测量立方冰块的尺寸)。
测量程序--测量本身就很难进行。例如要测小的活体动物的重量要得到对象的配合就显得特别难。
目测对值是操作者的技巧。观测者的移动会是目标好像在移动。当有指针读取标尺时,这类"视差误差"就会发生。
"引入的"不确定度--你的仪器校准就有了不确定度,然后这就成为你做测量的不确定度中的一部分。(但要记住不做校准的不确定度会更加糟)。
操作者的技巧--有些测量要靠操作者的技巧和判断。在精细调整测量工作方面,或在用眼睛读取精细得分度方面,有的人可能会比别的人做的更好。有的仪器的使用,如秒表,有赖于操作者的反应时间。(但是,犯粗大错误是另外的事,这并不是造成不确定度的原因)
采样问题--你做的测量必须完全代表你想要评估的工序特点。如果你想要知道工作台的温度,就不能用放置在靠近空调出口墙上的温度计去测量。如果你要在生产线上选区样品去测量,就不要总是取周一早上制造的头10件产品。
环境--温度、气压、湿度及许多其他环境条件都可能影响测量仪器或被测物。
在知道误差大小和效果的场合(如从校准证书得知),就可对测量结果做修正。但一般来说,每一个从上述来源和其他来源的不确定度都是贡献给测量总不确定度的单个"输入分量"。
5.任何测量中的不确定度一般类型
1. 1什么是测量?
测量告知我们关于某物的属性。它可以告诉我们某物体有多重,或者有多热,或者有多
长。测量就赋予这种属性一个数。
测量总是用某种仪器来实现的。尺子、秒表、称重称,以及温度计都是测量仪器。
测量结果通常有两部分组成:一个数和一个测量单位,例如"这有多长?……2米"。
1. 2什么不是测量?
有些过程看起来像是测量,然而并不是。例如,两根绳子做比较,看那一根长些,这实际上就不是测量。计数通常也不认为是测量。检测(test)往往不是测量;检测通常要得出"是或非"的答案,或者"合格或不合格"的结果。(但是,测量可以是检测的局部过程,逐而得出检测结果)。
2. 测量不确定度
2.1 什么是测量不确定度?
测量不确定度是对任何测量的结果存有怀疑。你也许认为制作良好的尺子、钟表和温度计应该是可靠的,并应给出正确答案。但对每一次测量,即使是最仔细的,总是会有怀疑的余量。在日常说话中,这可以表述为"出入",例如一根绳子可能2米长,由1cm的"出入"。
2.2 测量不确定度的表述
由于对任何测量总是存在怀疑的余量,所以我们需要回答"余量有多大?"和"怀疑有多差?"这样,为了给不确定度定量实际上需要有两个数。一个是该余量(或称区间)的宽度;另一个是置信概率,说明我们对"真值"在该余量范围内有多大把握。
例如:
我们可以说某棍子的长度测定为20厘米加或减1厘米,由95%的置信概率。这结果可以写成:
20cm±1cm,置信概率为95%。
这个表述是说我们对棍子长度在19厘米到12厘米时间由95%的把握。还有其他一些表述置信概率的方式,对此将在下文第7节中再说。
2.3误差与不确定度的比较
不要混淆术语"误差"和"不确定度"是很重要的。
误差:是某待测物的测得值与"真值"之间的差。
不确定度:是定量表示对测量结果的怀疑程度。
无论何时我们都可能试图去修正任何已知的误差,例如:通过从校准证书得到的修正值。
但是我们并不知道其值的任何误差都是不确定度的来源。
2.4 为什么测量不确定度是重要的
你也许对测量不确定度有兴趣仅仅是因为你希望要做质量好的测量,并要了解结果。但是,还有其他一些更特殊的理由要考虑测量不确定度。
你也需要做测量作为下列工作的一部分:
●校准--必须在证书上报告测量不确定度。
●检测--需要测量不确定度来确定合格与否。
●允差--在你能确定是否符合允差以前,你需要知道不确定度。 ……或者你可能需要阅读或了解校准证书或者检测或测量的书面技术规范。
3. 关于数字集合的基本统计学
3.1 "测量再而三,只为一剪子"…操作误差
工匠中间有一种说法,"测量再而三,只为一剪子"。这意思是说,在着手工作以前通过两、三次核对测量,你就能减少工作中出错的风险。
事实上,任何测量至少进行三次是明智的做法。若测量只进行一次,就意味着出错可能完完全被忽视了。如果你做两次测量而两者并不一致,你仍然不会知道哪一个是"错"的。但如果你做三次测量,切有两次彼此一致,而且第三个差很多,那么你就能怀疑这第三个测量结果。
所以,仅仅为了防止出大错,或叫操作误差,对任何测量至少进行三次就是明智的。但是测量不确定度实际上并不是操作误差。这是有对重复测量多次的其他重要理由。 3.2基本统计计算
从你的测量重,通过取多次读数并进行某些基本统计计算,你就能增加你所得到的信息量。有两项最主要的统计计算,就是要求的一组数值的平均值或算术平均值,以及它们的标准偏差。
3.3获得最佳估计值--取多次读数的平均值
虽然重复测量给出不同结果,但你也许并没有做错什么。这可能是由于进行的测量有自然变化。(例如:若你在野外测量风速,常常不会有稳定的值。)或者,也可能因为你的测量器具没有工作在完全稳定状态。(例如:卷尺可能因拉紧情况不同而给出不同结果。)
如果在重复读数时读数有变化,那么最好多次读数并取平均值。平均值给你的是"真值"的估计值。平均值和算术平均值通常是在符号上方加一短杠来表示,例如?(#x短杠)就是x的平均值。图以表示一组量值及其平均值图解说明。例1则说明如何计算算术平均值。
图1"圆点图"说明一组实例值并标出了平均值
3.4你应该对多少次读数求平均
一般说来,你用的测量值越多,那么你得到的"真"值的估计值就越好。理想的估计值应当无穷多数值集来求得平均值。但增加读数要做额外的工作,而且会产?quot;缩小回报"的效果。什么是合理的次数呢?10次是普遍选择的,因为这能是计算容易。采取20次只比10次给出稍好的估计值,采用50次只比20次稍好。根据经验通常取4至10次读数就够了。
3.5分散范围…标准偏差
在重复测量给出了不同结果时,我们就要了解这些读数分散范围有多宽。量值的分散范围告诉了我们关于测量不确定度的情况。通过了解这种分散范围有多大,我们就能着手判断这次测量或者组测量的质量如何。
有时候我们知道了最大值和最小值之间的范围就够了。但是对一组少量的值,这就不可能给出关于最大值和最小值之间读数分散性的有用信息。例如,一个很大的分布范围可能会由于单次读数而与其他读数差很多。
对分散范围定量的常见形式是标准偏差。一个数集的标准偏差告诉我们各个读数代表性的与该组读数平均值差多少。
根据"经验",全部读数大概有三分之二会落在平均值的加、减(±)一倍标准偏差范围内。大概有全部读数的95%会落在两倍标准偏差范围内。虽然这种"尺度"决非普遍适用,但应用广泛。对标准偏差的"真"值只能从一组非常大量(无穷多)的读数来求得。从适度个数的量值能够求得的只是标准偏差的估计值。3.6计算估计的标准偏差
----------------------------------------------------------------------
例2表明如何计算标准偏差的估计值
例2计算一组数值的估计的标准偏差
单用笔和纸来算标准偏差是不方便的,但下例可以手算。例如你有一组n次的读数(让我们用于上例同样的10次一组)
先求平均值:
该组读数如前例所泳:16、19、18、16、17、19、20、15、17、13,平均值为17。
下一步求每个读数与平均值之差,即 -1、+2、+1、-1、0、+2、+3、-2、0、-4。
对上面的数求平方值,即 1、2、1、1、0、4、9、4、0、16
再下一步,求和并除以n-1(本例n为10,n-1为9)。即
估计的标准偏差与通过对上面总数取平方跟求得,即s=4.441/2=2.1
(修约到小数点后一位)
4.误差和不确定度来自何处?
许多事物都会暗暗损及测量。测量中的缺陷可能看的见,也可能看不见。由于实际的测量决不会是在完美的条件下进行的,误差和不确定度可能来自下述多方面:
测量仪器(器具)--仪器可能遇到的误差包括:偏移,由于老化、磨损或其他多种漂移而变化,读数不清晰,噪声(对电子仪器),以及其他许多问题。
被测物--被测物可能不稳定。(设想在温暖的房间内试图测量立方冰块的尺寸)。
测量程序--测量本身就很难进行。例如要测小的活体动物的重量要得到对象的配合就显得特别难。
目测对值是操作者的技巧。观测者的移动会是目标好像在移动。当有指针读取标尺时,这类"视差误差"就会发生。
"引入的"不确定度--你的仪器校准就有了不确定度,然后这就成为你做测量的不确定度中的一部分。(但要记住不做校准的不确定度会更加糟)。
操作者的技巧--有些测量要靠操作者的技巧和判断。在精细调整测量工作方面,或在用眼睛读取精细得分度方面,有的人可能会比别的人做的更好。有的仪器的使用,如秒表,有赖于操作者的反应时间。(但是,犯粗大错误是另外的事,这并不是造成不确定度的原因)
采样问题--你做的测量必须完全代表你想要评估的工序特点。如果你想要知道工作台的温度,就不能用放置在靠近空调出口墙上的温度计去测量。如果你要在生产线上选区样品去测量,就不要总是取周一早上制造的头10件产品。
环境--温度、气压、湿度及许多其他环境条件都可能影响测量仪器或被测物。
在知道误差大小和效果的场合(如从校准证书得知),就可对测量结果做修正。但一般来说,每一个从上述来源和其他来源的不确定度都是贡献给测量总不确定度的单个"输入分量"。
5.任何测量中的不确定度一般类型
没有找到相关结果
已邀请:
5 个回复
duangx (威望:0) - 爱学习
赞同来自:
不过正好对我有用