《6 Sigma项目运作实例》
如何定义一个项目?
项目定义是由冠军来完成的。我们简单介绍以下项目是如何定义的。
1确定主要商业问题:
a目标
b目的
c可交付使用的
2对与生产来说:
a循环时间
b质量/缺陷水平
c耗费
3项目的选择
a选择项目的工具
a1宏观图
a2 Pareto图分析
a3鱼骨图
a4因果矩阵图
b项目的标准(评估)
b1减少缺陷的70%
b2第一年节省 $175K
b3项目完成周期为4个月
b4最少的资金总额
b5黑带的第一个项目必须满足培训目标
《6 Sigma项目运作实例》->《定义阶段》->我们在定义阶段做什么
---------------------------------------------------------------------------------------------------
我们在定义阶段需要做什么?
1,完成项目陈述。
2,完成项目预测节省金额。
3,完成问题陈述:
3.1问题是什么?
3.2在哪里和什么时间发现的?
3.3问题将涉及哪些工序?
3.4谁将受到影响?
3.5问题的严重程度是什么?
3.6你是如何得知这些的?
4,绘制宏观图。
5,描述项目的主线。
6,完成目标陈述。
7,组成项目小组,列出小组成员。
8,完成财务评估。
《6 Sigma项目运作实例》->《定义阶段》->如何进行项目问题陈述
---------------------------------------------------------------------------------------------------
如何进行问题陈述?
分六个方面进行问题陈述:
1问题是什么?
2在哪里和什么时间发现的?
3问题将涉及哪些工序?
4谁将受到影响?
5问题的严重程度是什么?
6你是如何得知这些的?
《6 Sigma项目运作实例》->《定义阶段》->如何绘制宏观图
---------------------------------------------------------------------------------------------------
如何绘制宏观图?
绘制宏观图的顺序:供应商->输入->工序->输出->客户
《6 Sigma项目运作实例》->《定义阶段》->项目的目标陈述要点
---------------------------------------------------------------------------------------------------
项目的目标陈述要点:
1,目标陈述
2,计算方法
3,全年节省额
确定Team Members成员:
1,小组成员要包括技术人员
2,包括维修人员(如果需要)
3,包括操作者
4,小组人员不超过5人(特殊情况除外)。
《6 Sigma项目运作实例》->《测量阶段》->如何进行项目描述
---------------------------------------------------------------------------------------------------
如何进行项目描述:
1,目标陈述
2,Metric 图
3,月节省额
如何绘制工艺流程图:
召集小组:
流程图绘制是集体努力的结果
小组包括:
流程负责人:项目结果的负责人
工程部门-工艺,产品,设计及设备
生产部门-操作员,各班次主管,培训员,操作班长,维修技师
流程图所需信息
脑力风暴
观察/经历
操作手册
工程标准,工作指示
六大方面(人,机,方法,测量,材料,环境)
确定工艺范围:
范围至观重要
越窄越好!
大量工艺步骤可能表明项目定义不佳或问题
源于几个项目
问题藏于问题中
若问题可以由粗略分析解决,管理层会去做
绘制可执行的工艺图
你能确认缺陷来源吗?
我们能有意识地改变输入指标变量吗?
有意识的改变输入指标变量能直接影响输出结果吗?
工艺流程图(PFD):
6 Sigma 工艺流程图的要素:
所有工艺步骤包括隐形工厂
数据采集点
所有设备/工具
各步骤表明增值性(VA)和非增值性(NVA)
控制标准文件
用标准符号绘制工艺流程:
在Microsoft OfficeTM 等软件中可找到
工艺流程图-程序:
绘制工艺记载的工艺步骤
包括所有检查点,测量指标和传运步骤
确认所有数据采集点
标示各工序标准控制文件
各步骤标明为增值性(VA)或非增值性(NVA)
确认各工艺步骤的 X 和 Y
标明可能消除的NVA 步骤
加入并标明“隐形工厂”工段
标明为VA或NVA,标明可能消除的步骤
标明须指定控制文件的步骤
加入DUP,RTY,COPQ,循环周期等估计值
标明须进行量具和工艺能力研究的步骤
通过直接或秘密观察确认准确性
文件记录/确认:
文件记录的工艺流程
首先绘制记录下来的工艺
加入并标明隐形工厂步骤
当所有步骤展示出来后,流程图就属于实际工艺
确认
流程图的准确性至关重要
项目组必须花时间观察工艺
秘密进行。观察导致行为改变
确认实际工艺设置与记录的设置相同
跨班跨机器观察工艺
如何绘制工艺流程细图:
工艺流程细图:
6 Sigma 工艺流程图要素:
工艺或产品是输出指标Y和输入指标X
标准上下限和标准控制文件
所用设备/工具
绘制工艺流程细图
工艺流程细图必须依工艺流程图而画。更改其一应在另一个中反映出来。
应使用最新的控制文件
标明所有隐形工厂步骤的输入输出指标
项目定义是由冠军来完成的。我们简单介绍以下项目是如何定义的。
1确定主要商业问题:
a目标
b目的
c可交付使用的
2对与生产来说:
a循环时间
b质量/缺陷水平
c耗费
3项目的选择
a选择项目的工具
a1宏观图
a2 Pareto图分析
a3鱼骨图
a4因果矩阵图
b项目的标准(评估)
b1减少缺陷的70%
b2第一年节省 $175K
b3项目完成周期为4个月
b4最少的资金总额
b5黑带的第一个项目必须满足培训目标
《6 Sigma项目运作实例》->《定义阶段》->我们在定义阶段做什么
---------------------------------------------------------------------------------------------------
我们在定义阶段需要做什么?
1,完成项目陈述。
2,完成项目预测节省金额。
3,完成问题陈述:
3.1问题是什么?
3.2在哪里和什么时间发现的?
3.3问题将涉及哪些工序?
3.4谁将受到影响?
3.5问题的严重程度是什么?
3.6你是如何得知这些的?
4,绘制宏观图。
5,描述项目的主线。
6,完成目标陈述。
7,组成项目小组,列出小组成员。
8,完成财务评估。
《6 Sigma项目运作实例》->《定义阶段》->如何进行项目问题陈述
---------------------------------------------------------------------------------------------------
如何进行问题陈述?
分六个方面进行问题陈述:
1问题是什么?
2在哪里和什么时间发现的?
3问题将涉及哪些工序?
4谁将受到影响?
5问题的严重程度是什么?
6你是如何得知这些的?
《6 Sigma项目运作实例》->《定义阶段》->如何绘制宏观图
---------------------------------------------------------------------------------------------------
如何绘制宏观图?
绘制宏观图的顺序:供应商->输入->工序->输出->客户
《6 Sigma项目运作实例》->《定义阶段》->项目的目标陈述要点
---------------------------------------------------------------------------------------------------
项目的目标陈述要点:
1,目标陈述
2,计算方法
3,全年节省额
确定Team Members成员:
1,小组成员要包括技术人员
2,包括维修人员(如果需要)
3,包括操作者
4,小组人员不超过5人(特殊情况除外)。
《6 Sigma项目运作实例》->《测量阶段》->如何进行项目描述
---------------------------------------------------------------------------------------------------
如何进行项目描述:
1,目标陈述
2,Metric 图
3,月节省额
如何绘制工艺流程图:
召集小组:
流程图绘制是集体努力的结果
小组包括:
流程负责人:项目结果的负责人
工程部门-工艺,产品,设计及设备
生产部门-操作员,各班次主管,培训员,操作班长,维修技师
流程图所需信息
脑力风暴
观察/经历
操作手册
工程标准,工作指示
六大方面(人,机,方法,测量,材料,环境)
确定工艺范围:
范围至观重要
越窄越好!
大量工艺步骤可能表明项目定义不佳或问题
源于几个项目
问题藏于问题中
若问题可以由粗略分析解决,管理层会去做
绘制可执行的工艺图
你能确认缺陷来源吗?
我们能有意识地改变输入指标变量吗?
有意识的改变输入指标变量能直接影响输出结果吗?
工艺流程图(PFD):
6 Sigma 工艺流程图的要素:
所有工艺步骤包括隐形工厂
数据采集点
所有设备/工具
各步骤表明增值性(VA)和非增值性(NVA)
控制标准文件
用标准符号绘制工艺流程:
在Microsoft OfficeTM 等软件中可找到
工艺流程图-程序:
绘制工艺记载的工艺步骤
包括所有检查点,测量指标和传运步骤
确认所有数据采集点
标示各工序标准控制文件
各步骤标明为增值性(VA)或非增值性(NVA)
确认各工艺步骤的 X 和 Y
标明可能消除的NVA 步骤
加入并标明“隐形工厂”工段
标明为VA或NVA,标明可能消除的步骤
标明须指定控制文件的步骤
加入DUP,RTY,COPQ,循环周期等估计值
标明须进行量具和工艺能力研究的步骤
通过直接或秘密观察确认准确性
文件记录/确认:
文件记录的工艺流程
首先绘制记录下来的工艺
加入并标明隐形工厂步骤
当所有步骤展示出来后,流程图就属于实际工艺
确认
流程图的准确性至关重要
项目组必须花时间观察工艺
秘密进行。观察导致行为改变
确认实际工艺设置与记录的设置相同
跨班跨机器观察工艺
如何绘制工艺流程细图:
工艺流程细图:
6 Sigma 工艺流程图要素:
工艺或产品是输出指标Y和输入指标X
标准上下限和标准控制文件
所用设备/工具
绘制工艺流程细图
工艺流程细图必须依工艺流程图而画。更改其一应在另一个中反映出来。
应使用最新的控制文件
标明所有隐形工厂步骤的输入输出指标
没有找到相关结果
已邀请:
5 个回复
davidchang2005 (威望:0)
赞同来自:
An experimenter could run 2-sample t-tests against every
combination of means
1 vs. 2, 1 vs. 3, 1 vs. 4, 1 vs. 5
2 vs. 3, 2 vs. 4, 2 vs. 5
3 vs. 4, 3 vs. 5
4 vs. 5
Why would this not be a good idea?
Obviously, it is tedious and cumbersome
What about alpha risk?
Each t-test has a risk of false rejection ()
4 . 0
10 ^ 95 . 0 1
=
=total
Remember, the probability of being
successful in a multi-step process is the
product of the individual step probabilities.
Each of the 10 combinations of tests would
need to be correct in order for the entire
analysis is correct, that is, 0.95 x 0.95 x … x
.095 for each of the ten processes. The total
alpha risk is one minus the probability of
being correct, or in this case ~ 0.4. That is,
approximately 40% of the time in a five
treatment analysis like this, we would
incorrectly identify a difference that does not,
in truth, exist.
Solution – Analysis of Variance
ANOVA is really an extension (generalization) of the
2-sample t-test
ANOVA is a method of detecting difference between
multiple means of samples
Why is it called Analysis of Variance?
ANOVA is the mathematics behind the intuitive evaluation
ANOVA compares/analyzes variances
Variance within a group
Variance between groups
ANOVA is also the basis for analyzing
DOE, which will be covered in Week 3.
Minitab ANOVA Results – Case 1
One-way ANOVA: TmtA, TmtB, TmtC, TmtD, TmtCntrl1
Analysis of Variance
Source DF SS MS F P
Factor 4 24.65720 6.16430 643.60 0.000
Error 45 0.43100 0.00958
Total 49 25.08820
Individual 95% CIs For Mean
Based on Pooled StDev
Level N Mean StDev ----------+---------+---------+------TmtA
10 6.5500 0.0850 (*)
TmtB 10 6.9500 0.0850 (*)
TmtC 10 5.9900 0.1101 (*)
TmtD 10 7.5200 0.1033 (*)
TmtCntrl 10 5.5200 0.1033 (*)
----------+---------+---------+------Pooled
StDev = 0.0979 6.00 6.60 7.20
What do you
think this
means?
Minitab ANOVA Results – Case 2
One-way ANOVA: Tmt1, Tmt2, Tmt3, Tmt4, TmtCntrl2
Analysis of Variance
Source DF SS MS F P
Factor 4 31.51 7.88 3.89 0.009
Error 45 91.25 2.03
Total 49 122.76
Individual 95% CIs For Mean
Based on Pooled StDev
Level N Mean StDev --+---------+---------+---------+----Tmt1
10 6.250 1.457 (------*-------)
Tmt2 10 7.260 1.561 (-------*------)
Tmt3 10 6.240 0.729 (-------*-------)
Tmt4 10 7.710 1.412 (------*-------)
TmtCntrl 10 5.490 1.748 (-------*------)
--+---------+---------+---------+----Pooled
StDev = 1.424 4.8 6.0 7.2 8.4
What do you
think this
means?
Analysis of Variance – General Recipe
- State the practical
problem- State the null
hypothesis- State the alternate
hypothesis- Do the model
assumptions hold?- Construct the
Analysis of VarianceTable
- Do the assumptions for
the errors hold (residualanalysis)?
- Interpret the p-value (or
the F-statistic) for thefactor effect (p < α )
- Calculate %SSfor the
factor and error terms- Translate the
conclusion into practicalterms
This is the general recipe for hypothesis
testing. The tests differ in the appropriate
statistics and appropriate distributions.
偶然性检验:
Contingency Tables & Chi-Square Tests
What Is a Contingency Table?
Pg 7 ?April 01, Breakthrough Management Group. Unpublished proprietary work available only under license. All rights reserved. April 10, 2001
A contingency table is
A method used to analyze data in a two-way classification
A method for analyzing data that are usually discrete,
attribute data (count-type)
A tool for testing the relationship between two sources of
variation
Are the sources independent? Are the sources related?
Analogous to finding interactions in regression and ANOVA
analyses
Hypotheses:
H o : Factor A is independent of Factor B
H a : Factor A is not independent of Factor B
During the analysis of sources of
variation, it is often required to determine if
two factors that contribute to the variation are
independent of each other. Consider a gas-phase
chemical reactor vessel. The Black
Belt may find that both temperature and
pressure are critical factors contributing to
variance in the product yield. Given the
nature of a gas reaction and Charles?Law
relating temperature and pressure, it is very
likely that pressure is a function of
temperature and not an independent factor.
A contingency table analysis will answer
the question of independence.
This type of analysis is called a
contingency table because the alternate
hypothesis is that one factor is is not
independent (is contingent) on another.
Contingency Table Terminology
The analysis examples, so far, have all be univariate
Univariate – having one variable; measuring only one
characteristic in each sampling unit
Examples: Blood pressure reading on a patient, number of
crashes at an intersection in a month
Bivariate or Multivariate
Measurements taken on 2 or more characteristics per
sampling unit.
Examples: Surveys that correlate answers to demographic
data, a study of voting habits by education level.
Contingency tables are concerned with
bivariate or multivariate data.
A Contingency Table Example
The board of regents at a university would like to determine
if two variables are independent: employee classification
(staff, faculty, administrator) and whether a single union
should be the sole collective bargaining agent for employee
benefits.
A random sample of 200 employees is taken from
employee records and each employee is classified
according to both variables.
The data are in Excel worksheet CTables.xls and on the
following slide
Minitab Output
Expected counts are printed below observed counts
Favor NotFavor Undecide Total
1 30 1515 60
24.00 27.00 9.00
2 40 5010100
40.00 45.00 15.00
3 10 25540
16.00 18.00 6.00
Total 80 90 30 200
Chi-Sq = 1.500 + 5.333 + 4.000 +
0.000 + 0.556 + 1.667 +
2.250 + 2.722 + 0.167 = 18.194
DF = 4, P-Value = 0.001
Does this
look
familiar?
?
P-value<0.05
Reject Ho
Notice, once-again, that the Chi-Square
value form Minitab is the same as the one
calculated manually a few slides earlier.
Reject H0 if the p-value is below your
selected alpha-risk.
样品尺寸选择:
Why Sample Size Is Important:
A Class Exercise in Minitab
Start Minitab -- Select Calc > Random Data > Normal…
Generate two data sets
Sample1
μ= 0, σ = 1, n=10
Sample 2
μ= 0.5, σ = 1, n=10
Conduct a 2-sided,
2-sample
t-test on the data.
What do you conclude?
Repeat with n = 25,
n=50, n=75 &
n=100.
Record your results
for a later exercise.
Remember the Central Limit Theorem?
As the sample size increases, the standard
deviation of the sample means gets smaller. t-
tests are tests for comparing the means of
sample sizes. The smaller the standard
deviation, compared to the difference in the
mean, the greater the likelihood of detecting
the difference.
The Effect of Sample Size
As the graphs show, each distribution of means gets progressively more
narrow, until there is very little overlap between the two distributions.
This is a simple illustration of the effect of sample size on the the ability to
resolve differences between the means of two normal distributions. Each
of the other hypothesis tests also has a similar relationship to sample size.
The Confidence Interval for Means
As the equation shows, as n gets very
large, the width of the confidence interval will
be very small. At infinite sample sizes, the
width of the confidence interval is zero.
With enough samples, any difference will
be statistically significant. However, not
every statistically significant difference is of
practical importance.
Learning to distinguish between an
important “practical” difference and
“statistically” significant difference is a
valuable lesson for a Black Belt.
一元方差分析:
Analysis of Variance – One-way ANOVA
To introduce the concepts of Analysis of Variance
Sum of Squares
Mean Square Error
To demonstrate and practice calculating the ANOVA table
Manually
Minitab
To practice ANOVA
Exercises
Homework
ANOVA Introduction
Example:
A fertilizer company wants to compare fields treated with
four new, spring wheat fertilizers to fields with no fertilizer.
Ten different fields were sampled for each treatment and
the average bushels/acre was computed.
Problem:
Were any of the fertilizers different from each other and the
unfertilized control group?
Many times, there are more than two
groups of means. ANOVA solves the
problem of more than two means.
Multiple t-tests – Adequate?
An experimenter could run 2-sample t-tests against every
combination of means
1 vs. 2, 1 vs. 3, 1 vs. 4, 1 vs. 5
2 vs. 3, 2 vs. 4, 2 vs. 5
3 vs. 4, 3 vs. 5
4 vs. 5
Why would this not be a good idea?
Obviously, it is tedious and cumbersome
What about alpha risk?
Each t-test has a risk of false rejection ()